Interplay between cytosolic disulfide reductase systems and the Nrf2/Keap1 pathway
نویسنده
چکیده
NADPH transfers reducing power from bioenergetic pathways to thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR) to support essential reductive systems. Surprisingly, it was recently shown that mouse livers lacking both TrxR1 and GR ('TR/GR-null') can sustain redox (reduction-oxidation) homoeostasis using a previously unrecognized NADPH-independent source of reducing power fuelled by dietary methionine. The NADPH-dependent systems are robustly redundant in liver, such that disruption of either TrxR1 or GR alone does not cause oxidative stress. However, disruption of TrxR1 induces transcription factor Nrf2 (nuclear factor erythroid-derived 2-like-2) whereas disruption of GR does not. This suggests the Nrf2 pathway responds directly to the status of the thioredoxin-1 (Trx1) system. The proximal regulator of Nrf2 is Keap1 (Kelch-like ECH-associated protein-1), a cysteine (Cys)-rich protein that normally interacts transiently with Nrf2, targeting it for degradation. During oxidative stress, this interaction is stabilized, preventing degradation of newly synthesized Nrf2, thereby allowing Nrf2 accumulation. Within the Trx1 system, TrxR1 and peroxiredoxins (Prxs) contain some of the most reactive nucleophilic residues in the cell, making them likely targets for oxidants or electrophiles. We propose that Keap1 activity and therefore Nrf2 is regulated by interactions of Trx1 system enzymes with oxidants. In TR/GR-null livers, Nrf2 activity is further induced, revealing that TrxR-independent systems also repress Nrf2 and these might be induced by more extreme challenges.
منابع مشابه
Effect of Resistance and Endurance Trainings on Nrf2/Keap1 Signaling Pathway in Testicular Tissue of Type 2 Diabetic Rats
Background and purpose: The antioxidant Nrf2/Keap1 pathway prevents cellular damages against oxidative stress and this pathway is disrupted following diabetes. The aim of this study was to investigate the effect of endurance and resistance training on antioxidant Nrf2/Keap1 pathway in testicular tissue of diabetic rats. Materials and methods: In this experimental research, 48 male Wistar rats ...
متن کاملNrf2 regulates ROS production by mitochondria and NADPH oxidase
BACKGROUND Nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is a crucial transcription factor mediating protection against oxidants. Nrf2 is negatively regulated by cytoplasmic Kelch-like ECH associated protein 1 (Keap1) thereby providing inducible antioxidant defence. Antioxidant properties of Nrf2 are thought to be mainly exerted by stimulating transcription of antioxidant proteins, where...
متن کاملKeap1 Cysteine 288 as a Potential Target for Diallyl Trisulfide-Induced Nrf2 Activation
UNLABELLED Diallyl sulfide, diallyl disulfide, and daillyl trisulfide (DATS) are major volatile components of garlic oil. In this study, we assessed their relative potency in inducing antioxidant enzyme expression. Among the three organosulfur compounds, DATS was found to be most potent in inducing heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO1) in human gastric epithelial...
متن کاملCharacterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1-NRF2 pathway, and not the BACH1-NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds.
To better understand the role of transcription factor NF-E2-related factor (NRF) 2 in the human and its contribution to cancer chemoprevention, we have knocked down its negative regulators, Kelch-like ECH-associated protein 1 (KEAP1) and broad-complex, tramtrack and bric à brac and cap'n'collar homology 1 (BACH1), in HaCaT keratinocytes. Whole-genome microarray revealed that knockdown of KEAP1 ...
متن کاملThe Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase.
The Nrf2 transcription factor promotes survival following cellular insults that trigger oxidative damage. Nrf2 activity is opposed by the BTB/POZ domain protein Keap1. Keap1 is proposed to regulate Nrf2 activity strictly through its capacity to inhibit Nrf2 nuclear import. Recent work suggests that inhibition of Nrf2 may also depend upon ubiquitin-mediated proteolysis. To address the contributi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 43 شماره
صفحات -
تاریخ انتشار 2015